Deep learning algorithms are capable of learning arbitrarily complex non-linear functions by using a deep enough and a wide enough network with the appropriate non-linear activation function. Traditional ML algorithms often require feature engineering of finding the subset of meaningful features to use. Deep learning algorithms often avoid the need for the feature engineering step….

# Category: Deep Learning

## Why do you typically see overflow and underflow when implementing an ML algorithms ?

A common pre-processing step is to normalize/rescale inputs so that they are not too high or low. However, even on normalized inputs, overflows and underflows can occur: Underflow: Joint probability distribution often involves multiplying small individual probabilities. Many probabilistic algorithms involve multiplying probabilities of individual data points that leads to underflow. Example : Suppose you…

## Suppose you build word vectors (embeddings) with each word vector having dimensions as the vocabulary size(V) and feature values as pPMI between corresponding words: What are the problems with this approach and how can you resolve them ?

Problems As the vocabulary size (V) is large, these vectors will be large in size. They will be sparse as a word may not have co-occurred with all possible words. Resolution Dimensionality Reduction using approaches like Singular Value Decomposition (SVD) of the term document matrix to get a K dimensional approximation. Other Matrix factorisation techniques…

## What is negative sampling when training the skip-gram model ?

Recap: Skip-Gram model tries to represent each word in a large text as a lower dimensional vector in a space of K dimensions such that similar words are closer to each other. This is achieved by training a feed-forward network where we try to predict the context words given a specific word, i.e., …

## Given the following two sentences, how do you determine if Teddy is a person or not? “Teddy bears are on sale!” and “Teddy Roosevelt was a great President!”

This is an example of Named Entity Recognition(NER) problem. One can build a sequence model such as an LSTM to perform this task. However, as shown in both the sentences above, forward only LSTM might fail here. Using forward only direction LSTM might result in a model which recognises Teddy as a product : “bear”, which is on…

## How is long term dependency maintained while building a language model?

Language models can be built using the following popular methods – Using n-gram language model n-gram language models make assumption for the value of n. Larger the value of n, longer the dependency. One can refer to what is the significance of n-grams in a language model for further reading. Using hidden Markov Model(HMM) HMM maintains long…

## What are the optimization algorithms typically used in a neural network ?

Gradient descent is the most commonly used training algorithm. Momentum is a common way to augment gradient descent such that gradient in each step is accumulated over past steps to enable the algorithm to proceed in a smoother fashion towards the minimum. RMS prop attempts to adjust learning rate for each iteration in an automated…

## Given a deep learning model, what are the considerations to set mini-batch size ?

The batch size is a hyper parameter. Usually people try various values to see what works best in terms of speed and accuracy. Suppose you have M training instances and k batches, higher batch size is faster to do a pass on the entire dataset, through M/k mini batch iterations. As long as the data…

## What are the commonly used activation functions ? When are they used.

Ans. The commonly used loss functions are Linear : g(x) = x. This is the simplest activation function. However it cannot model complex decision boundaries. A deep network with linear activations can be shown incapable of handling non-linear decision boundaries. Sigmoid : This is a common activation function in the last layer of the neural…

## I have used a 4 layered fully connected network to learn a complex classifier boundary. I have used tanh activations throughout except the last layer where I used sigmoid activation for binary classification. I train for 10K iterations with 100K examples (my data points are 3 dimensional and I initialized my weights to 0 to begin with). I see that my network is unable to fit the training data and is leading to a high training error. What is the first thing I try ?

Increase the number of training iterations Make a more complex network – increase hidden layer size Initialize weights to a random small value instead of zeros Change tanh activations to relu Ans : (3) . I will initialize weights to a non zero value since changing all the weights in the same…